Telegram Group & Telegram Channel
Что вы знаете про нормальное распределение? Зачем оно нужно в Data Science?

Многие величины имеют нормальное распределение, которое также называют распределением Гаусса. Чаще всего, если на какую-то величину влияет много слабых независимых факторов, то эта величина будет иметь близкое к нормальному распределение.

У нормального распределения есть два параметра: математическое ожидание (среднее) и дисперсия. Распределение, у которого эти параметры соответственно равны нулю и единице, называют стандартным.

Также у нормального распределения есть несколько свойств:
▪️Симметричность относительно своего среднего значения.
▪️ График нормального распределения имеет характерную форму колокола.
▪️ Правило трёх сигм: около 68% значений лежат в пределах одного стандартного отклонения от среднего, около 95% — в пределах двух стандартных отклонений, и около 99.7% — в пределах трёх стандартных отклонений.

Многие статистические методы предполагают или опираются на нормальное распределение данных. К примеру, t-тест эффективен только тогда, когда данные соответствуют нормальному распределению. Кроме того, некоторые алгоритмы машинного обучения предполагают, что входные данные распределены нормально.

#junior



tg-me.com/ds_interview_lib/166
Create:
Last Update:

Что вы знаете про нормальное распределение? Зачем оно нужно в Data Science?

Многие величины имеют нормальное распределение, которое также называют распределением Гаусса. Чаще всего, если на какую-то величину влияет много слабых независимых факторов, то эта величина будет иметь близкое к нормальному распределение.

У нормального распределения есть два параметра: математическое ожидание (среднее) и дисперсия. Распределение, у которого эти параметры соответственно равны нулю и единице, называют стандартным.

Также у нормального распределения есть несколько свойств:
▪️Симметричность относительно своего среднего значения.
▪️ График нормального распределения имеет характерную форму колокола.
▪️ Правило трёх сигм: около 68% значений лежат в пределах одного стандартного отклонения от среднего, около 95% — в пределах двух стандартных отклонений, и около 99.7% — в пределах трёх стандартных отклонений.

Многие статистические методы предполагают или опираются на нормальное распределение данных. К примеру, t-тест эффективен только тогда, когда данные соответствуют нормальному распределению. Кроме того, некоторые алгоритмы машинного обучения предполагают, что входные данные распределены нормально.

#junior

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/166

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Библиотека собеса по Data Science | вопросы с собеседований from fr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA